Knowledge-Based Event Detection in Complex Time Series Data
نویسندگان
چکیده
This paper describes an approach to the detection of events in complex, multi-channel, high frequency data. The example used is that of detecting the re-siting of a transcutaneous O2/CO2 probe on a baby in a neonatal intensive care unit (ICU) from the available monitor data. A software workbench has been developed which enables the expert clinician to display the data and to mark up features of interest. This knowledge is then used to define the parameters for a pattern matcher which runs over a set of intervals derived from the raw data by a new iterative interval merging algorithm. The approach has been tested on a set of 45 probe changes; the preliminary results are encouraging, with an accuracy of identification of 89%
منابع مشابه
Identification of outliers types in multivariate time series using genetic algorithm
Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...
متن کاملOnline Fault Detection and Isolation Method Based on Belief Rule Base for Industrial Gas Turbines
Real time and accurate fault detection has attracted an increasing attention with a growing demand for higher operational efficiency and safety of industrial gas turbines as complex engineering systems. Current methods based on condition monitoring data have drawbacks in using both expert knowledge and quantitative information for detecting faults. On account of this reason, this paper proposes...
متن کاملA Novel Method for Detection of Epilepsy in Short and Noisy EEG Signals Using Ordinal Pattern Analysis
Introduction: In this paper, a novel complexity measure is proposed to detect dynamical changes in nonlinear systems using ordinal pattern analysis of time series data taken from the system. Epilepsy is considered as a dynamical change in nonlinear and complex brain system. The ability of the proposed measure for characterizing the normal and epileptic EEG signals when the signal is short or is...
متن کاملOn the Detection of Trends in Time Series of Functional Data
A sequence of functions (curves) collected over time is called a functional time series. Functional time series analysis is one of the popular research areas in which statistics from such data are frequently observed. The main purpose of the functional time series is to predict and describe random mechanisms that resulted in generating the data. To do so, it is needed to decompose functional ti...
متن کاملبررسی توانمندی مدل شبکه عصبی مصنوعی در شبیهسازی فرآیند بارش-رواناب در شرایط تغییر اقلیم (مطالعه موردی: حوزه سد پاشاکلا بابل)
River flow forecasting plays an important role in planning, management and operation of water resources. To achieve this goal and according to the phenomenon of global warming, it is necessary to simulate the daily time series of rainfall and runoff for future periods. Therefore, it is important to survey the detection of climate change event and its impact on precipitation and runoff in the ba...
متن کامل